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ABSTRACT

The influence of noise on synchronization has potential impact on physical, chemical, biological, and engineered systems. Research on systems
subject to common noise has demonstrated that noise can aid synchronization, as common noise imparts correlations on the sub-systems.
In our work, we revisit this idea for a system of bistable dynamical systems, under repulsive coupling, driven by noises with varying degrees
of cross correlation. This class of coupling has not been fully explored, and we show that it offers new counter-intuitive emergent behavior.
Specifically, we demonstrate that the competitive interplay of noise and coupling gives rise to phenomena ranging from the usual synchro-
nized state to the uncommon anti-synchronized state where the coupled bistable systems are pushed to different wells. Interestingly, this
progression from anti-synchronization to synchronization goes through a domain where the system randomly hops between the synchro-
nized and anti-synchronized states. The underlying basis for this striking behavior is that correlated noise preferentially enhances coherence,
while the interactions provide an opposing drive to push the states apart. Our results also shed light on the robustness of synchronization
obtained in the idealized scenario of perfectly correlated noise, as well as the influence of noise correlation on anti-synchronization. Last, the
experimental implementation of our model using bistable electronic circuits, where we were able to sweep a large range of noise strengths
and noise correlations in the laboratory realization of this noise-driven coupled system, firmly indicates the robustness and generality of our
observations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056173

Coupled bistable systems provide a particularly simple, yet rich,
platform to explore the interplay of noise and coupling. This is
a problem that has garnered long-standing attention, as it has
bearing on our basic understanding of the collective behavior of
noise-driven coupled nonlinear systems and also offers opportu-
nities for potential applications. For instance, it has been recently
demonstrated that in the presence of attractive coupling, noise-
induced transitions in such systems can synchronize, and this
happens even when the noises driving the subsystems are uncor-
related. While most research efforts have focused on the con-
structive effect of noise in aiding synchronization, in this work,
we explore systems coupled through repulsive interactions that
may oppose the effect of noise, and we present the new impli-
cations of this competitive interplay of noise and coupling. The
test-bed of our study is prototypical repulsively coupled bistable

systems, subject to noises with different degrees of cross correla-
tion. This allows us to explore the nontrivial interaction between
repulsive coupling and noise, as well as ascertain the role of
noise correlation in the synchronization of such noise-driven
subsystems. We find that this system exhibits a rich variety of
behavior including complete synchrony, complete antisynchrony,
and a unique regime with windows of synchrony interspersed
with antisynchrony. To reiterate, anti-synchronization refers to
the state when the bistable subsystems are pushed to different wells.
The behavior of this system is characterized over a large range
of noise strengths and noise correlations, including a measure
reflecting the random hopping between synchronized and anti-
synchronized states. All observations are verified experimentally
using electronic circuit experiments, indicating the robustness of
our central results.
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I. INTRODUCTION

Synchronization is a phenomenon that is widely observed in
both natural and engineered systems. Typically, synchronization
of dynamical subsystems is achieved either through coupling or
through common external forcing.1–4 The form of this coupling
term may vary to produce interesting new phenomena; for instance,
oscillation suppression through conjugate coupling,5,6 phase flip
transition due to time-delay coupling,7,8 or multistability in repulsive
coupling.9,10 In another direction, interaction of noise with nonlin-
earity produces a wide variety of cooperative behavior.11–14 A broad
area of study where interaction with noise can play a pivotal role
is in multistable systems, where noise-induced escape from locally
stable attractors gives rise to novel phenomena such as stochastic
resonance.15 Noise has even been used as the common external forc-
ing that brings about the onset of synchrony, in a phenomenon
termed as noise-induced synchronization.16–20

The coupled systems governed by both noise and coupling
exhibit interesting interplay between these two influences. While
much work has focused on attractive coupling, both attractive and
repulsive coupling are known to occur in natural systems. For
instance, in neuroscience, attractive coupling can be related to exci-
tatory synapses and repulsive coupling can be related to inhibitory
synapses,21 and repulsive coupling between circadian clock neurons
in the suprachiasmatic nucleus is shown to encode seasonal time.22

Repulsive coupling has also recently been found to be of importance
in chemically active matter, giving rise to new phenomena such as
anti-swarming.23 Therefore, the interplay of repulsive coupling and
noise is an important question that is currently gaining consider-
able attention.24,25 Also, Nicolaou et al. have very recently reported
that uncorrelated noise can be more effective than common noise
in enhancing synchronization of coupled oscillators.26 Connecting
these two threads evokes the question: does noise correlation aid or
inhibit synchronization in repulsively coupled systems, and does it
lead to any qualitatively different behavior?

Studying noise-induced transitions in coupled bistable sys-
tems has the potential to make the interplay of noise and coupling
clearly apparent, as the subsystems are simple and exhibit fixed point
dynamics. This allows the activity of the subsystems to be viewed as
transitions between the two “potential wells”; therefore, such sys-
tems can serve as a useful test-bed for the general understanding
of the influence of correlated noise.27,28 Furthermore, bistable sys-
tems are relevant in a variety of fields, ranging from relaxation
oscillators and multivibrators to light switches and Schmitt triggers.
Therefore, the study of noise-driven coupled bi-stable systems is also
relevant from the standpoint of engineered systems with potential
applications.29

Now, it has been shown that interplay of attractive coupling
and uncorrelated noises in coupled bistable systems can induce syn-
chronous escapes (hops) between locally stable wells for an optimal
region in coupling and noise strengths.30 In this work, we will focus
on the interaction of repulsive coupling and cross-correlated noises
in a coupled bistable system. We adopt a novel parameter, noise cor-
relation coefficient (ρ), which allows us to smoothly vary the cross
correlation between the noise experienced by the two subsystems.
Both numerical simulations and electronic circuit experiments will
be used to explore this system, and we expect the nontrivial interplay

of correlated noises and repulsive coupling to produce a variety of
novel behaviors.

II. MODEL

Consider a coupled bistable system (cf. Fig. 1) whose governing
equations are of the form

ẋ1 = F(x1) + c(−x2 − x1) + D η1(t),

ẋ2 = F(x2) + c(−x1 − x2) + D η2(t).
(1)

Here, F can be any nonlinear function that yields a bistable
potential. We use the simple cubic function, F(xi) = 4(xi − 5x3

i ),
which gives rise to a bistable system with two stable fixed points

x− = −1/
√

5 and x+ = +1/
√

5, separated by an unstable fixed
point (the “barrier”) at x = 0. The state characterized by positive
valued state variables is denoted as the “positive well” and that
characterized by negative valued state variables is denoted as the
“negative well.”

The coupling between the two subsystems is repulsive and bidi-
rectional in nature. At a significant value of the coupling strength c,
the coupling term causes the two subsystems to repel each other into
opposite wells, namely, when x1 is in the negative well and x2 is in
the positive well and vice versa.

Each subsystem is driven by a zero mean Gaussian noise with
variance 1, and the parameter D denotes the strength of this noise.
A characteristic feature of our model is that the noises η1 and η2 are
cross-correlated with each other with a correlation coefficient ρ; i.e.,
if X1 and X2 are the two Gaussian random variables used to generate
these noises (η1 and η2), then ρ is given as

ρX1 ,X2 =
〈(X1 − 〈X1〉)(X2 − 〈X2〉)〉

σ 2
. (2)

It is important to note that the noise sequences η1 and η2 are
generated with this specific cross correlation. Therefore, the measure
ρ acts as an additional parameter in our model that fixes the amount
of the correlation between η1 and η2. When ρ = 0, the two noises
are completely independent and uncorrelated. ρ = 1 implies that
the two noises are exactly the same (η1 = η2), i.e., common noise.
Thus, ρ provides a parameter to smoothly vary the extent of the cor-
relation between the two noise sequences from uncorrelated noise
to common noise.

The only force driving the subsystems is the two noise terms
η1 and η2. Hence, the only dynamics the subsystems exhibit are
the noise-induced transitions (over the barrier) from one potential
well to the other. Therefore, the study of coupled bistable systems
driven by noise implies a study of synchrony of these noise-induced
transitions. It is well documented that common noise synchronizes

FIG. 1. A schematic representation of the model.
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nonlinear subsystems,16–20 while large uncorrelated noise is expected
to inhibit synchronization. Thus, in a system driven purely by noise,
the parameter ρ allows us to precisely vary the effect that these noises
have on system dynamics, thereby allowing for both synchrony and
asynchrony in these noise-induced transitions.

We explore the behavior of our coupled bistable model by vary-
ing these three system parameters (in the parameter range c ∈ [0, 3],

D ∈ [0, 1], and ρ ∈ [0, 1]). The coupling strength c fixes the amount

of repulsive interactions between the subsystems. The noise strength

D and the noise correlation ρ determine the strength and nature

of the stochastic forcing, driving the subsystems. A rich variety

of behavior ranging from complete antisynchrony induced by the
repulsive coupling to complete synchrony produced by common
noise is observed in this model. The various behaviors observed and
their characterization are detailed in Sec. III.

III. RESULTS

To showcase the multitude of behaviors seen, we first display
results from the numerical simulation of stochastic differential equa-
tions that describe the system [cf. Eq. (1)]. These simulations were
performed using the Euler–Maruyama method with a stepsize of
10−2. In Fig. 2, time trails of the state variables x1 (blue) and x2

(orange) are plotted for different values of system parameters (the
exact values are indicated above each panel). Along with x1 and x2,
the absolute difference between the two variables |x1 − x2| (green)
is also plotted as a visual aid to gauge the amount of synchrony
between the x1 and x2 time trails. On the right side of each panel
is a normalized histogram measured over long simulation times
(2 × 105 time steps), depicting the distribution of these |x1 − x2| val-
ues. All plots in Fig. 2 are simulated for coupling strength c = 1,
which is a moderate value that allows diverse behavior.

FIG. 2. Time trails of the two system variables x1 (blue) and x2 (orange) and their absolute difference |x1 − x2| (green) obtained by simulating Eq. (1) for a range of
parameter values. The specific parameter values corresponding to each plot from top to bottom are as follows: (a) D = 0.05, c = 1, ρ = 0.5; (b) D = 0.2, c = 1, ρ = 0.5;
(c) D = 0.35, c = 1, ρ = 0.5; (d) D = 0.5, c = 1, ρ = 0.3; (e) D = 0.5, c = 1, ρ = 0.9; (f) D = 0.8, c = 1, ρ = 0.3; (g) D = 0.8, c = 1, ρ = 0.9; and (h) D = 0.8,
c = 1, ρ = 1. Here, D, c, and ρ denote noise strength, coupling strength, and noise correlation coefficient, respectively. On the right end of each panel is the normalized
histogram depicting the distribution of |x1 − x2| values obtained by simulating the corresponding time trails for a long simulation time (2 × 105 timesteps).
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The top panel [Fig. 2(a)] corresponds to the case when noise
strength D is very small (D = 0.05). Thus, in spite of the repulsive
coupling, the two subsystems simply stay in the potential wells deter-
mined by their initial condition; i.e., they may begin in the same well
or in opposite wells and continue in that stable state. The next two
panels [Figs. 2(b) and 2(c)] show the system response for low noise
strengths (D = 0.2 and D = 0.35) and moderate coupling strength
(c = 1). Here, the noise strength is enough to facilitate the transi-
tion between the potential wells, and the two subsystems are robustly
pushed to opposite wells because of the repulsive coupling. It is
interesting to note that a small amount of noise is necessary to facil-
itate the interaction between the subsystems for moderate coupling
strengths. These trajectories clearly show the antisynchrony induced
by repulsive coupling between the subsystems. Also, in both Figs. 2(b)
and 2(c), |x1 − x2| ≈ 0.9 for all time, which clearly denotes robust
antisynchrony.

The fourth and fifth panel [Figs. 2(d) and 2(e)] correspond to
moderate values of noise strength (D = 0.5) and coupling strength
(c = 1). In this regime, noises in the subsystems are strong enough
to overcome the antisynchrony caused by the repulsive coupling.
Windows of a noise-induced activity (transitions between the poten-
tial wells) are seen in between phases of antisynchrony caused by
the repulsive coupling. This can be clearly seen by following the
intermittent rise and fall of the |x1 − x2| plots (green) in the cor-
responding time trails. This alternation in time clearly shows the
rich interplay between repulsive coupling and noise in our model.
It is very interesting to note that these windows of noise-induced
activity are highly synchronized for the case of a high noise cor-
relation [cf. Fig. 2(e)], i.e., for ρ = 0.9. This can be inferred from
the corresponding histogram that shows two sharp peaks, one about
|x1 − x2| ≈ 0.9, corresponding to the antisynchronous windows,
and the other about |x1 − x2| = 0 corresponding to the highly syn-
chronous windows caused by the highly correlated noises. It is this
unique behavior, where synchrony and antisynchrony coexist and
temporally alternate, that we want to highlight among the plethora
of possibilities within this model. We would like to point out that
these switches are reminiscent of phase-flips. The fact that both
phases can coexist points to the emergence of multistability due to
the competing influences of repulsive coupling and highly corre-
lated noise. The switch between these two phases is brought about
by the stochasticity inherent in this model. Hence, we term these
alternations stochastic phase-flips. In contrast to the fifth panel, the
noise-induced activity in the fourth panel [Fig. 2(d)], i.e., for the
case of a low noise correlation (ρ = 0.3), is not synchronized. This
can also be understood from the corresponding histogram through
the clear absence of a prominent peak about |x1 − x2| = 0. Hence,
we deduce that these continuous flips between the antisynchronous
and synchronous modes are the result of competing influences from
repulsive coupling and highly cross-correlated noises, respectively.

The sixth and seventh panels [Figs. 2(f) and 2(g)] correspond
to high noise strength (D = 0.8) and moderate coupling strength
(c = 1). The sixth panel [Fig. 2(f)] shows the timetrails for a low
noise correlation (ρ = 0.3) and the seventh panel [Fig. 2(g)] for a
high noise correlation (ρ = 0.9). Here, due to high noise strength,
noise-induced transitions dominate most of the time. The effect
of repulsive coupling is barely seen in the small antisynchronous
windows that arise in between. This can also be inferred from the

flattening of the peak corresponding to antisynchrony (the peak
about |x1 − x2| ≈ 0.9) from histograms of both timetrails. It is
again seen both from the time trail and histogram of the seventh
panel [Fig. 2(g)] that the noise-induced transitions are highly syn-
chronous when the cross correlation between the two noises are high
(ρ = 0.9). Conversely, the sixth panel shows noise dominated tra-
jectories with very less correlations as seen from the broad uni-
modality of the corresponding histogram. Thus, both the fifth and
seventh panel point toward the idea that a high noise correlation
clearly leads to improved synchrony even if the coupling term is
repulsive.

The eighth panel [Fig. 2(h)] corresponds to the limiting case
where a noise correlation ρ = 1; i.e., the two subsystems are driven
by the exact same noise sequence. For the case of common noise, the
subsystems always stabilize to completely synchronized transitions
between the two potential wells. This again is made apparent by the
singular peak at |x1 − x2| = 0 in the histogram.

Now that the different regimes of behavior in this model have
been elucidated, we depict how these regimes are distributed in the
parameter space. Given that our behavioral regimes are character-
ized by the amount of synchrony they exhibit, we rigorously quantify
the synchrony between the two subsystems using a variant of syn-
chronization error Z. Since our model is purely driven by noise,
describing synchronization error as the deviation from complete
synchronization leads to the requirement of an arbitrary threshold
to denote synchronization (as the absolute values of these noise-
driven trajectories may never completely overlap). Alternatively, we
view the dynamics of our coupled bistable system as a series of tran-
sitions from one potential well to the other. Then, we can simply
define the synchronization error as the fraction of time (measured
over long simulation times) spent by the two subsystems in different
potential wells. Since the potential barrier of our bistable system lies
at x = 0, the product of the state variables is always negative when
the subsystems are in different wells. Hence, synchronization error
Z is easily defined mathematically as

Z =
1

N

N
∑

i=1

H(x1[i] × x2[i]), (3)

where N is the total number of timesteps in the observed time series,
with N being very large, and H is given as

H(xi) =
{

1, xi < 0,
0, xi ≥ 0.

(4)

Figure 3 depicts this synchronization error Z as a heatmap
over noise strength D and noise correlation ρ. Note that each plot
in Fig. 3 corresponds to one value of coupling strength (indicated
above each plot). The synchronization error Z [cf. Eqs. (3) and (4)]
for each parameter value has been calculated by simulating Eq. (1)
for 2 × 105 timesteps, leaving 2 × 103 timesteps as transients. Z
corresponding to each parameter value combination has been aver-
aged over 100 different initial conditions chosen randomly from the
interval [−1, 1]. Each heatmap depicts the Z value corresponding to
1600 parameter (D and ρ) combinations.

In Fig. 3, for coupling constant c = 1, the parameter values
corresponding to time trails in Fig. 2 have been marked over the
heatmap. To identify and intuitively infer the various regimes of
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FIG. 3. Synchronization error Z [cf. Eq. (3)] plotted vs noise strength D and noise correlation ρ for various values (indicated above each plot) of coupling strength c. The
parameter values of all the timetrails in Fig. 2 are marked on the c = 1 plot. We clearly see that as the strength of the repulsive coupling increases, the fraction of parameters
yielding anti-synchrony increases.

behavior in the parameter space, we explore the heatmap of c = 1
in detail. For very low noise strengths D < 0.07, there is a region in
the parameter space where the Z values are completely stochastic;
i.e., the state variables are only dependent on the initial condi-
tions. The parameter corresponding to Fig. 2(a) lies in this region.
Beyond a critical noise strength (0.07 ≤ D < 0.4), a bright band
of yellow, which represents Z ' 1, appears. This is the regime of
complete antisynchrony, implying that repulsive coupling domi-
nates the behavior in this region. The parameters corresponding to
Figs. 2(b) and 2(c) lie here. Note that in this region, complete anti-
synchrony occurs for all values of noise correlation (except ρ = 1);
i.e., this regime is unaffected by changes to the noise correlation.
It is altered only by common noise (η1 = η2). Next is the region
of moderate noise strength (0.4 ≤ D < 0.6), which marks the fall
of synchronization error Z from 1; i.e., this is the transition region
where a noise-induced activity begins to appear in between win-
dows of antisynchrony. The parameters corresponding to Figs. 2(d)
and 2(e) appear here. Beyond D ≥ 0.6 is the region of high noise
strength where the behavior of the system is dominated by noise.
The parameters corresponding to Figs. 2(f) and 2(g) occur here. In
this region, there exists a gradient of synchronization error Z as the
noise correlation coefficient ρ goes from zero to one. For a lower
noise correlation, Z ≈ 0.5 meaning that the state variables in this
region are mostly uncorrelated. As ρ approaches one, Z approaches
zero, which demonstrates the constructive role of noise correlation
in the onset of synchrony. The region with the points “e” and “g,”
i.e., the region with sufficient noise strength, coupling strength, and
high noise correlation, is where continuous flips between synchrony
and antisynchrony occur.

These regimes characterized by Z exist across all the differ-
ent values of coupling strengths. For c = 0, there is no region of
antisynchrony (bright yellow) as there is no repulsive coupling. As
the value of coupling strength c is increased (c = 0.5 and c = 1), a
region of complete antisynchrony appears for an optimal range of
noise strengths. For higher values of c (c = 2 and c = 3), antisyn-
chrony dominates over most of the parameter space. For the case
of ρ = 1, i.e., for common noise, the subsystems completely syn-
chronize beyond a critical value of noise strength. This is true for
all the studied values of coupling strength. The parameter value for
Fig. 2(h) lies in this region of complete synchrony on the c = 1
heatmap. Thus, we have thoroughly explored the various behav-
iors of this system across a large section of the parameter space. In
Sec. IV, experimental validation of all simulation results is detailed.

IV. EXPERIMENTAL IMPLEMENTATION

The study of noise-driven multistable systems has wide real
world applications, from modeling chemical kinetics31,32 to design-
ing noise-aided logic gates.29,33–35 Hence, it is all the more important
to experimentally demonstrate the generality of our observations.
To do this, we implement the same model described in Sec. II, now
with a simple bistable electronic circuit. Specifically, we use a piece-
wise linear circuit that can be constructed with very few components
and can be robustly reproduced to make identical coupled units. The
non-dimensionalized form of the coupled circuit equation becomes

ẋ1 = F(x1) + c(−x2 − x1) + D η1(t),

ẋ2 = F(x2) + c(−x1 − x2) + D η2(t),
(5)
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FIG. 4. The schematic circuit diagram of the experimental setup. All component values are indicated on the diagram. The diodes used in the circuit are 1N4148 diodes. We
study the circuit for two values of coupling resistances, RC = 1200� and RC = 300�. The system variables x1 and x2 from Eq. (5) are proportional to voltages V1 and V2

across C1 and C2.

where F is a piecewise linear function given by

F(xi) =







−(xi + 1), xi < −0.5,
xi, −0.5 ≤ xi ≤ 0.5,
−(xi − 1), xi > 0.5.

(6)

A schematic representation of the coupled circuit is given in
Fig. 4. The full details of implementing this nonlinearity F are dis-
cussed in Ref. 36. From Fig. 4, we see that the two state variables
of this electronic implementation are the voltages V1 and V2 across
the capacitors C1 and C2. All the specific component values used in
the construction of the circuit are indicated in the schematic. The
two bistable subsystems (marked in the schematic) have been cou-
pled through two op-amp adder circuits. The inverted sum of the
two state variables obtained from these adders provides the neces-
sary functional form for repulsive coupling. All oscilloscope trails
were obtained using a Tektronics 2104B digital storage oscilloscope.
A Measurement Computing (USB-1616HS) high speed data acquisi-
tion device was used to both generate the correlated Gaussian noises

of specific noise correlations and also to record all experimental
voltage time-series data for further analysis.

Figure 5 shows the oscilloscope traces for various values of sys-
tem parameters. Here, again (as in Fig. 2), we clearly see the different
regimes of behavior detailed in Sec. III. Panel 4 [Fig. 5(d)] clearly
shows the windows of noise-induced synchrony in between antisyn-
chrony caused by repulsive coupling. It is interesting to note that
even when ρ = 1 [as in Fig. 5(f)], complete synchronization does not
occur in experimental systems. This is to be expected because per-
fectly identical systems cannot be experimentally constructed and
also identical driving forces can never be generated. Thus, instead of
complete synchrony, at ρ = 1, the system demonstrates a behavior
similar to Fig. 2(g). This points to the crucial detail that the behav-
ior of our model with a very high noise correlation is more relevant
in real systems than perfectly common noise, thereby eliciting the
importance of this work.

Thus, all the behavioral regimes observed in simulation have
been experimentally shown. We further reinforce our findings
through the complete characterization of experimental time-series
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FIG. 5. Oscilloscope traces of voltages V1 (blue) and V2 (yellow) across capac-
itors C1 and C2 (cf. Fig. 4) obtained for various values of system parameters.
The specific parameter values corresponding to each trail from top to bottom
are as follows: (a) D = 0.2 V, ρ = 0.3, RC = 1200�, (b) D = 0.6 V, ρ = 0.8,
RC = 1200�, (c) D = 0.8 V, ρ = 0.3, RC = 1200�, (d) D = 0.8 V, ρ = 1,
RC = 1200�, (e) D = 1.2 V, ρ = 0.3, RC = 1200�, and (f) D = 1.2 V,
ρ = 1, RC = 1200�. Here, D denotes noise amplitude, ρ denotes noise cor-
relation, and RC denotes coupling resistance (cf. Fig. 4). The various regimes of
behavior observed in Fig. 2 are clearly seen here in the experimental timetrails.

data measured using a high speed data acquisition device. The volt-
ages V1 and V2 were measured for 10 s at a sample rate of 2 × 105

data points per second. Ten such samples each for 150 parameter
value combinations were recorded. These data were then used to cal-
culate synchronization error Z [cf. Eqs. (3) and (4)] for all parameter
values. The experimental data were recorded for two specific values
of coupling resistance Rc, namely, 1200 and 300 �. The experimen-
tal parameter space plot thus obtained is shown in Fig. 6. Parameter
values for the oscilloscope traces in Fig. 5 are overlaid on the param-
eter space plot in Fig. 6. We again see complete correspondence with
our numerical characterization.

V. SUMMARY AND DISCUSSION

The behavior of repulsively coupled bistable elements driven
only by noise was explored in detail. We scanned the space of three
parameters: coupling strength c, noise strength D, and noise cor-
relation coefficient ρ. A wide range of behavior from complete
antisynchrony to complete synchrony was observed. A new kind
of behavior involving continuous alternations between synchronous
and antisynchronous modes was found both in simulations and elec-
tronic circuit experiments. The different behaviors observed were
characterized using a new measure of synchronization that reflects
the propensity of two coupled bistable sub-systems to be attracted to
the same potential well. All aspects of our numerical study, includ-
ing the detailed characterization in the parameter space, were also
reproduced through electronics. It is important to note here that the
challenge of the experimental verification lies in the implementa-
tion of a sweep of noise strengths and noise correlations, which is

FIG. 6. Synchronization error Z, computed from experimental data, recorded using a high speed data acquisition device (Measurement Computing USB-1616HS). Z is
plotted here vs noise strength D and noise correlation coefficient ρ. Left: For coupling resistance, RC = 1200�. The parameter values of the time trails in Fig. 5 are marked.
Right: For coupling resistance, RC = 300�.
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typically difficult. Most reported experimental results present a few
specific noise strengths and noise correlations, but not the full range.
We have managed to efficiently set up a fine sweep, and therefore,
our experiments were capable of providing a stringent, detailed, and
comprehensive verification of the numerical results.

Our study elaborates the interesting competing interplay
between repulsive coupling and cross-correlated noises. All coupled
systems that share a physical environment experience noises that are
correlated to some degree. While such environmental fluctuations in
physically contiguous systems are expected to have some degree of
cross correlation, it is unlikely to have perfect correlations. It is in
this context that this work gains relevance, as we present a way to
model these regimes of intermediate correlations and also describe
unique behaviors that arise in those regimes.

As demonstrated in the experimental observations, forcing
with highly correlated noise, in other words “almost common forc-
ing,” is of more real world relevance than perfect common noise
whose correlation is exactly one. Certain outcomes generated by per-
fectly correlated common noise in numerical simulations, such as
complete synchronization in a noise window for all repulsive cou-
pling strengths, are not robust to small loss in the noise correlation;
i.e., the behavior is lost when noise correlation coefficient ρ is even
slightly less than one. Therefore, various behaviors may be more of
an exception than the norm, as they occur only in the limit of a per-
fect correlation. This points to the importance of the present study
from the broad standpoint of modeling noise-induced behavior in
coupled systems, as we demonstrate how noise correlations may play
a key role in the observability of emergent behavior in real systems.
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