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In this article we experimentally demonstrate an efficient scheme to regulate the behavior of coupled nonlinear
oscillators through dynamic control of their interaction. It is observed that introducing intermittency in the
interaction term as a function of time or the system state predictably alters the dynamics of the constituent
oscillators. Choosing the nature of the interaction, attractive or repulsive, allows for either suppression of
oscillations or stimulation of activity. Two parameters � and τ , that reign the extent of interaction among
subsystems, are introduced. They serve as a harness to access the entire range of possible behaviors from fixed
points to chaos. For fixed values of system parameters and coupling strength, changing � and τ offers fine
control over the dynamics of coupled subsystems. We show this experimentally using coupled Chua’s circuits
and elucidate their behavior for a range of coupling parameters through detailed numerical simulations.
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I. INTRODUCTION

Dynamics ranging from fixed points to chaos exist in
nature [1], and mechanisms to regulate such dynamics are
crucial for practical applications. Coupled nonlinear oscilla-
tors serve as a prototype to model many real-world systems
[2]; examples include the climate [3], population dynamics
in ecosystems [4], and financial markets [4]. Coupling among
dynamical systems gives rise to fascinating emergent behavior
such as synchronization [5–10], extreme events [11,12], and
chimera states [13–15] that individual units of the collective
are devoid of. In recent years, several theoretical and experi-
mental investigations have established oscillation quenching
[16–22] and oscillation revival [23–27], i.e., the restora-
tion of activity in quenched oscillators, as robust emergent
phenomena in varied complex systems. On the other hand,
rhythmogenesis [28–32], or mechanisms to stimulate oscilla-
tions from stable fixed point states, have been also garnering
interest. These collective phenomena provide mechanisms to
control the dynamics of the constituent subsystems through
specific coupling forms.

Control mechanisms enable stabilization of dynamical sys-
tems to desired asymptotic states [33]. Precise control of
nonlinear systems [34,35], especially chaotic systems, has
been an area of intense research [36] due to its vast potential
for engineering applications. Control methods, such as the
OGY method [37] and threshold control [38–40], have been
developed to curtail the activity in the chaotic systems to
obtain desirable states. On the contrary, methods to induce
activity and preserve complex dynamics in systems, termed
the anticontrol of chaos, have also been widely worked on
[41–43].
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It is important to note that the aforementioned schemes to
regulate dynamics are typically applicable in lone dynamical
systems. Therefore it is imperative to design a method to
yield any target dynamics in the constituent units of a cou-
pled system. A plausible approach is to control the shared
information between the interacting nodes [44,45] in the
schemes that attain oscillation quenching or rhythmogenesis.
In this paper we introduce an intermittent control approach
to acquire the desired attractor, where an interaction function
changes dynamically as a function of time or the states of
the individual oscillators. The intermittent interaction used
in this work may be comparable to other schemes, such as
the finite time step method [46], dynamic coupling [47–56],
sporadic coupling [57], periodic coupling [58], and stochastic
on-off coupling [59]. The term “intermittent” is used here to
indicate the discontinuous nature of the interaction between
the coupled systems. The prime focus of this work is to
recast intermittent coupling that can yield both oscillation
suppression and rhythmogenesis as a powerful leash to con-
trol the dynamics of coupled subsystems to desired stable
states.

Systems where interactions get activated as a function of
time or the system state abound in both natural and engi-
neered contexts. In biological systems, gene regulation is
dynamically controlled as a function of system state [60]. In
robotic networks with swarms of robots, interactions occur
only within a limited range in physical space [61]. In ocean
exploration [62], the robots typically communicate on aquatic
acoustic channels over long distances that are susceptible to
environmental interference. In these applications, maintaining
constant connections are energy expensive, and efficient inter-
mittent coupling schemes that maximize control and minimize
information transfer are highly sought after. It is also worth
noting that this intermittent scheme opens up the possibility
to control the dynamics of the systems whose parameters and
coupling strengths are fixed and cannot be modified continu-
ously.
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In coupled systems, both oscillation suppression and rhyth-
mogenesis have been widely explored as important dynamical
phenomena. Yet a simple control scheme that utilizes this
suppression and stimulation of activity to access any desired
dynamical state (from steady states to chaos) has not been pro-
posed. We achieve this fine control by limiting the interaction
among the subsystems through dynamic modulation (switch-
ing ON and OFF) of the coupling term. This is experimentally
demonstrated in a pair of Chua’s circuits, both as a function of
time and state variables. In the next section, this intermittent
control scheme is described in detail.

II. SCHEME

Consider N (=2) identical m-dimensional nonlinear oscil-
lators coupled via dynamic interaction in the following two
ways:

Ẋi = F (Xi ) + εγ

N∑
j=1

(HXj − Xi ) (1)

and

Ẋi = F (Xi ) − εγ H
N∑

j=1

(Xj − Xi ), (2)

where i, j = 1, 2, and i �= j. Xi represents state variables of
the m-dimensional ith oscillator and F : Rm → Rm is the
vector field describing its intrinsic dynamics. γ is an m × m
diagonal matrix that determines which components of Xi take
part in the dynamic coupling. The interaction strength ε � 0 is
taken to be identical for all oscillators. Equation (1) represents
an attractive interaction, where the state variables X1 and X2

tend to approach each other under the influence of coupling.
Equation (2) represents a repulsive interaction, where the state
variables X1 and X2 repel each other [53,63–68].

Dynamic control of the coupling terms is achieved through
the step function H [47–49,55]. H (Xi, t ) takes the values 0
or 1, either as a function of time t or the state variables Xi.
When H = 1 the two oscillators are coupled to each other, and
when H = 0 they are completely isolated from each others’
influence. When H depends on the state variables of the two
oscillators, i.e.,

H (Xi, t ) =
{

1 if Xi ∈ R′
0 if Xi /∈ R′ , (3)

this yields a state-dependent interaction, where R′ is a subset
of the state space Rm where the interaction is active. A mea-
sure of this subset is obtained from the normalized fraction
� = �′/�a, where �a is the width of the uncoupled attractor
along the direction of the coupled state variable and �′ is the
width of the region in which the coupling is active. Time-
dependent interaction is when H is explicitly dependent on
time. For instance, H can be a periodic step function of time
period T as follows:

H (Xi, t ) =
{

1 if 0 < t � τ ′
0 if τ ′ < t � T

. (4)

Here, τ = τ ′/T is a measure for the fraction of time the
interaction is active.

These two parameters � and τ that control the degree of
interaction between the coupled systems allow us to harness a
given coupled oscillator into desired stable states. Specifically,
the attractive interaction [cf. Eq. (1)] induces suppression of
activity among the subsystems, and the repulsive interaction
[cf. Eq. (2)] promotes the revival of activity [69,70]. This
scheme therefore enables control and anticontrol of chaos in
the constituent oscillators of a coupled system. Given this
framework, we experimentally demonstrate this scheme in a
pair of Chua’s circuits.

III. EXPERIMENTAL IMPLEMENTATION

The control schemes described above were implemented in
a pair of coupled Chua’s circuits. A schematic representation
of the experimental setup is detailed in Fig. 1. All compo-
nents used in the construction are mentioned explicitly in the
same. We first consider the attractive interaction described by
Eq. (1). The governing equations of the coupled circuit (cf.
Fig. 1) attain the form in Eq. (1), where

F =
⎡
⎣α(y − x − g(x))

x − y + z
−βy

⎤
⎦ γ =

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦, (5)

g(x) = bx + 1

2
(b − a)(|x − 1| − |x + 1|). (6)

The circuit equations are nondimensionalized as follows:

x = vx

BP
, y = vy

BP
, z = iLR

BP
, t = t ′

C2R
,

α = C2

C1
, β = C2R2

L
, ε = R

RC
,

a = GaR, b = GbR.

The coupling between the two Chua subsystems is via the
y variable (proportional to voltage vy across capacitor C2).
For the case of state-dependent interaction [cf. Eq. (3)], a
threshold is set on the mean voltage of the coupled variable,
i.e., when vy is above a threshold value, coupling is OFF
(H = 0). Changing this threshold voltage allows fraction � to
be manipulated. Such a state-dependent intermittent coupling
is experimentally implemented with two one-way coupling
circuits depicted in Fig. 1(c). A voltage-controlled single pole
double throw (SPDT) switch is implemented using analog
CMOS switches (AD7510DI). This switch is controlled using
the output of a comparator that monitors the mean value of
vy and compares it with a fixed threshold voltage. Thus the
coupling dynamically switches ON and OFF (H = 1 or 0)
based on the live values of the system variables vy1 and vy2

of the subsystems.
Oscilloscope trails obtained from this experimental imple-

mentation are shown on the left part of Fig. 2, voltage vx1 of
Chua 1(yellow), mean vy (blue), interaction control H (red),
and threshold voltage level (green) are presented. The resis-
tance R is fixed at R = 1750 � where the uncoupled systems
exhibit double-scroll chaos. The control H is ON only when
vy is below the threshold. In the top panel the mean vy (blue)
is always below the threshold level (green). Hence the control
H is always ON and � = 1. As we decrease the threshold,
the control term H goes to 0 (OFF) every time vy crosses the
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FIG. 1. A schematic representation of the electronic circuit implementation of the control scheme. (a) Block diagram depicting two Chua’s
circuits coupled through the y variables. Bidirectional coupling is established using two coupling circuits (one in each direction). The attractive
coupling circuit yields the coupling form in Eq. (1), and the repulsive coupling circuit yields the form in Eq. (2). (b) Chua’s circuit with values
of all components used. The parameter values of the nonlinear resistor (NR) are Ga = −0.756 m�−1, Gb = −0.401 m�−1, and BP = ±1.08 V.
The voltages vx , vy (across capacitors C1 and C2) and the current iL (through the inductor L) are proportional to the state variables x, y, and z,
respectively. (c) The coupling circuit used to implement the attractive coupling form from Eq. (1). Two of these coupling circuits are used to
establish bidirectional coupling between the two Chua’s circuits. (d) Coupling circuit used to implement the repulsive coupling form described
by Eq. (2). A negative resistance of −Rc was obtained using a simple negative impedance converter shown within the dotted lines in the figure.

threshold. This leaves just a negative feedback (−εXi) term
in Eq. (1), thereby suppressing oscillations. As the threshold
reduces, � becomes smaller and the interaction active region
reduces in size. This simultaneously leads to oscillation sup-
pression. From panels (a)–(f) we see a systematic control of
the dynamics reminiscent of inverse period doubling as the
oscillations completely die down for small values of �. Panels
(d) and (e) also show the coexistence of both steady-state and
limit cycle behavior for the same values of �. The existence
of this bistable regime evokes the possibility of hysteresis with
respect to �. This is numerically explored in the Supplemental
Material [71].

Time-dependent interaction [cf. Eq. (4)] that yields con-
trolled suppression of oscillations in the subsystems can
be implemented using the same coupling circuit given in
Fig. 1(c), where the control signal is an externally generated
square wave. The duty cycle of this control signal is analogous
to the fraction τ described in Eq. (4). This fixes the fraction
of time for which the interaction is ON (H = 1). The control
signal used in this implementation is a square wave oscillating
between 0 and 2 V at a frequency of 1 kHz.

On the right part of Fig. 2, oscilloscope trails from the
implementation of time-dependent interaction are depicted.
The control signal H is shown in red along with the state
variables vx1 (yellow) and vy1 (blue) of Chua 1 (cf. Fig. 1).
Here we see H is a periodic signal and interaction time τ

(duty cycle) systematically reduced from top to bottom. This

is accompanied by a systematic suppression of activity as the
system transitions from chaotic to periodic to oscillation death
states.

The repulsive coupling form described by Eq. (2) was
electronically implemented as shown in Fig. 1(d). The same
voltage-controlled CMOS switch (AD7510DI) was used in
the SPST configuration to intermittently couple the two sub-
systems. The negative resistance necessary to to implement a
−ε was implemented using a negative impedance converter,
shown within the dotted box in Fig. 1(d). The oscilloscope
time trails depicting stimulation of oscillations from fixed
points are shown in the Supplemental Material [71].

The scheme detailed in Sec. II was thus experimentally
demonstrated using coupled Chua’s circuits. Now, the be-
havior of this coupled system is studied in detail using both
experiments and numerical simulations over a range of cou-
pling parameters. This establishes the viability of dynamically
controlled interactions as a control mechanism for coupled
dynamical systems. The four different coupling regimes that
include attractive and repulsive interactions controlled by both
state and time are examined case by case.

IV. NUMERICAL EXPLORATION

A. Suppression of oscillations

First, the attractive coupling scheme described by Eq. (1)
is studied. We explore the behavior of this coupled system
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FIG. 2. Left: State-dependent interaction. (a) Oscilloscope traces of vx1 (yellow), v̄y(blue), H (red), and (threshold voltage) (green). The
coupling resistance is fixed at RC = 4380 �, and resistance R is fixed at R = 1750 �. The specific parameter values corresponding to each trail
from top to bottom are as follows: (a) � = 1, (b) � = 0.87, (c) � = 0.84, (d1) � = 0.5, (d2) � = 0.5, (e1) � = 0.36, (e2) � = 0.36, and
(f) � = 0. Here � denotes the fraction of state space where the interaction is active [cf. Eq. (3)]. As � is reduced, we see a systematic
reduction in the activity of the subsystems. Right: Time-dependent interaction oscilloscope traces of vx1 (yellow), vy1 (blue), and H (red). The
specific parameter values corresponding to each trail from top to bottom are as follows: (a) τ = 0.99, (b) τ = 0.9, (c) τ = 0.8, (d) τ = 0.6,

(e) τ = 0.3, and (f) τ = 0.1. Here τ (duty cycle of the periodic control signal) denotes the interaction active time described in Eq. (4). Again,
for decreasing values of τ , a systematic transition from chaotic, to periodic, to fixed point is observed.

when the interactions are controlled by the current state of
the coupled system. The control H becomes zero when the
mean ȳ becomes lesser than some threshold. Numerical sim-
ulations of this coupled Chua’s system [refer to Eq. (5)] were
carried out for R = 1850 � (double scroll chaos) for a range
of coupling strengths ε and control parameter �. In Fig. 3 the
top panel depicts and classifies the behavior of the coupled
Chua’s systems in the space of aforementioned parameters
(� and ε). We see large regions of chaotic (C), periodic (P),
and fixed-point (FP) regimes. The small white region in the
center shows coupling parameters for which steady states and
oscillatory states coexist. The core strength of this controlled
scheme is the fact that all these states can be accessed simply
by changing the amount of intermittent interaction (through
�) without even necessitating a change in coupling strength ε.
The middle panel shows clear bifurcations in system dynam-
ics for a fixed ε = 0.4 as a function of �. As � decreases,
the activity of the subsystems faithfully suppress from double
scroll chaos to single scroll chaos to limit cycles and fixed
points. The last panel shows oscilloscope snapshots depicting
phase space portraits from the experimental implementation
corresponding to same control regime for ε = 0.4. Note that
the attractors correspond to the time trails shown on the left of
Fig. 2. We clearly see that decreasing � offers a robust method
to regulate the dynamics of coupled systems.

Figure 4 corresponds to the attractive coupling scheme
controlled by an external time-dependent control signal. Here,
as detailed earlier, a periodic step function of time period T
comparable to the natural frequency of the uncoupled oscilla-
tor has been used. The fraction of time that the interaction
is ON (τ ) acts as a robust handle to control the activity
of the systems to the desired steady state. The top panel
shows the plethora of stable behaviors accessible through
this mechanism. The middle panel depicts bifurcation of sys-
tem dynamics from fixed points to double scroll chaos as a
function of the interaction time τ . The last panel portrays
experimental attractors obtained from the coupled Chua’s cir-
cuits for a range of τ values. These correspond to the time
trails shown in the right of Fig. 2. We see granular control in
behavior as a function of τ . For a given coupling strength ε,
note we can change from one dynamical state to another by
varying the fraction τ .

B. Stimulation of activity

Next, the repulsive coupling scheme described in Eq. (2)
was implemented. The time-dependent control mechanisms
remain the same. Repulsive coupling, specifically the form
considered in Eq. (2) is known to revive oscillations [69]. By
introducing intermittency in the coupling term, precise control

014203-4



REGULATING DYNAMICS THROUGH INTERMITTENT … PHYSICAL REVIEW E 106, 014203 (2022)

FIG. 3. Suppression through space-dependent interaction.
(a) Different dynamical states of two coupled Chua oscillators [cf.
Eqs. (1) and (5)] in the parameter plane (ε − �). The regimes
marked C, P, FP, and BS represent chaotic, periodic, fixed point,
and bistable (coexistence of oscillatory and fixed point state) state,
respectively. (b) Bifurcation diagram of the coupled Chua system
[cf. Eqs. (1) and (5)] is plotted with interaction active state space
� at ε = 0.41, obtained by sampling the relative maxima and
minima of the time history of x1(t ). The different colors show
attractors corresponding to positive and negative initial conditions.
(c) Experimental phase portraits for ε = 0.41 corresponding
to various values of the control parameter �. The time trails
corresponding to the same attractors were shown in Fig. 2.

over the degree of revival is possible. This is demonstrated
both in simulation and experiments. The experimental im-
plementation of a coupling with a negative coupling strength
(−ε) was made possible through a simple negative impedance
converter [refer Fig. 1(d)]. Bidirectional repulsive coupling
is therefore achieved by using two unidirectional coupling
circuits as depicted in Fig. 1. Oscilloscope trails obtained from
the experimental implementation is shown in the Supplemen-
tal Material.

Figure 5 details the case of state-dependent interaction
when the nature of the coupling is repulsive. The parameters
of the subsystems are fixed such that the uncoupled sys-
tems exhibit fixed point dynamics. So, for the simulations in
Fig. 5, R = 2050 �, and for the experimental implementation
R was fixed at 1950 �. The top panel shows regions in �

and ε where the subsystems exhibit chaotic (C), fixed point
(FP), periodic (P), and bistable (BS) dynamics. In the middle
panel, a bifurcation along increasing � at ε = 0.21 reveals a
systematic progression to double scroll chaos. Note that the
attractors obtained by exciting fixed points are much larger
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FIG. 4. Suppression through time-dependent interaction: (a) Dif-
ferent dynamical states of two coupled Chua oscillators [cf. Eqs. (1)
and (5)] in the parameter plane (ε − τ ). The regimes marked C, P,
and FP represent chaotic, periodic, and fixed point state, respectively.
(b) Bifurcation diagram of the coupled Chua system [cf. Eqs. (1) and
(5)] is plotted with interaction active time τ at ε = 0.41, obtained by
sampling the relative maxima and minima of the time history of x1(t ).
The different colors show attractors corresponding to positive and
negative initial conditions. Experimental phase portraits for ε = 0.41
corresponding to various values of the control parameter τ . The time
trails corresponding to the same attractors were shown in Fig. 2.

than those in Chua’s circuit whose native parameters are in
the chaotic regime (compare with Figs. 3 and 4). A large
bistable region where both fixed point and limiting cycle solu-
tions coexist was also found. This occurs as space-dependent
coupling introduces strong initial condition dependence in
these regions. The last panel from experiments clearly por-
trays the controlled revival of oscillation to any desired degree
and the bistable regions for middle values of � in close
correlation with numerical findings. Finally, Fig. 6 considers
the case of time-dependent interaction, i.e., repulsive interac-
tions controlled by time-varying signals. The top panel shows
three separated regions of behavior with no multistability.
The middle panel depicts a clear increase in complexity with
increasing τ . The experimental phase portraits closely match
the numerically obtained bifurcation results.

V. CONCLUSION

A robust scheme to control the dynamics of constituent
oscillators in coupled systems was proposed. The scheme was
experimentally demonstrated using coupled Chua’s circuits
with dynamic interactions facilitated through controllable
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FIG. 5. Stimulation through space-dependent interaction.
(a) Different dynamical states of two coupled Chua oscillators [cf.
Eqs. (2) and (5)] in the parameter plane (ε − �). The regimes
marked C, P, FP, and BS represent chaotic, periodic, fixed point,
and bistable (co-existence of oscillatory and fixed point state)
state, respectively. (b) Bifurcation diagram of the coupled Chua
system [cf. Eqs. (2) and (5)] is plotted with interaction active state
space � at ε = 0.21, obtained by sampling the relative maxima
and minima of the time history of x1(t ). The different colors show
attractors corresponding to positive and negative initial conditions.
Experimental phase portraits for ε = 0.21 corresponding to various
values of the control parameter τ . The time trails corresponding to
these attractors can be found in the Supplemental Material [71].

coupling circuits. We show that limiting interaction between
coupled oscillators in a controlled fashion by introducing
intermittency allows for a precise control of the constituent
oscillators, without access to either the system parameters
nor the strength of the interaction. This may lead to novel
control strategies of coupled networks and may allow the
harnessing of these predictable dynamics for engineering
applications. The effectiveness of this control mechanism
was demonstrated in a prototypical coupled chaotic system
(Chua’s circuits) both numerically and experimentally. This
suggests that stroboscopic modulation of the interaction term
as a function of state or time yields a simple and potent
mechanism for accessing the entire spectrum of behaviors in
coupled chaotic systems.

Two new parameters, � and τ , have been introduced that
limit the amount of interaction among the coupled subsystems
by controlling the fraction of state space or time period that
the interaction is ON. These parameters provide handles to
realize granular control of dynamics of the subsystems, while
no direct access to the system state, parameters, or coupling

FP
τ

y1

(a)

τ=0.4

y1

x1 x1 x1

τ=0

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(a)
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(b)

τ

x1

ε

FIG. 6. Stimulation through time-dependent interaction: (a) Dif-
ferent dynamical states of two coupled Chua oscillators [cf. Eqs. (2)
and (5)] in the parameter plane (ε − τ ). The regimes marked C, P,
and FP represent chaotic, periodic, and fixed point state, respectively.
(b) Bifurcation diagram of the coupled Chua system [cf. Eqs. (2) and
(5)] is plotted with interaction active time τ at ε = 0.21, obtained by
sampling the relative maxima and minima of the time history of x1(t ).
The different colors show attractors corresponding to positive and
negative initial conditions. Experimental phase portraits for ε = 0.21
corresponding to various values of the control parameter τ . The
time trails corresponding to the these attractors can be found in the
Supplemental Material [71].

strength is available. Thus this experimental implementation
may serve as a general template based on which system-
specific adaptations of this approach maybe realized.

Two coupling forms (attractive and repulsive) were demon-
strated in this work. The attractive form suppresses the activity
in subsystems of the coupled network, and the repulsive form
stimulates activity in the subsystems. These two forms can
thereby be considered as coupled system analogs to methods
that yield control and anticontrol of chaos.

This intermittent control scheme robustly decides the
asymptotic states of self-excited systems (such as Chua’s cir-
cuit). Thus it will also be interesting to see a variant of this
intermittent control scheme applied to systems with hidden
attractors whose basins do not intersect with any unstable
fixed point [72]. We would also like to emphasize that this
proposed intermittent control technique may be applied in
various other experimental contexts, where precise control of
constituent oscillator dynamics is required of coupled systems
like mercury beating heart (MBH) oscillators, electrochemical
systems, mechanical oscillators, and optoelectronic systems.
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This work illustrates this idea of control through inter-
mittent interactions in a minimal setting of two oscillators.
However, the general principles of oscillator suppression and
revival described here are number independent. A natural
progression of this work would be to realize such limited
interaction-based control in a larger number of coupled units.

Given the occurrence of bistable regimes in state-dependent
interaction schemes, a large network coupled intermittently
may give rise to chimera states that can be effectively con-
trolled using the same principles. Hence this control scheme
may serve as a powerful tool to regulate dynamics in a wide
variety of contexts.
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